top of page
Understanding the world of sand and water

Glossary of Dredging Technology Book 1

accuracies: calculating with   10-2

accuracy. depth measurement        8-12

adaptor  2-1-8 / 2-1-17

agitation dredging  1-8

air-lift   5-1

angle of friction between soil and steel    4-1-6

apparent transport concentration      5-63

arc of swing CSD     2-1-2

auger dredger  1-7

automatic ‘slope profiler’  2-1-6

beach nourishment 15-6

beneficial use of low quality dredged material 15-2

best efficiency point bep  pump   5-21

Bingham fluid in laminar zone     5-68

blade angles β  pump   5-20

blade shape:  influence of the cutting blade in clay   4-3-8

blockage   1-13

bluntness   2-1-12

Bollard pull   2-2-5

booster position   5-103

borrow area 15-2

Bottom depth statistics “Conditional Mean”  10-7

bottom disk cutter 1-6

bow thrusters  2-1-17

box anchor 2-1-15

breaching  of sand      4-2-1

brittleness of rock 4-4-5

Bruhl: effect of fine fraction on pipeline resistance  5-78

bucket dredger    1-2

bulking factor        7-2

bund at fill area15-6

calcium content and calcareous sand     7-7

capital dredging         3-2

cavitation zone in cut layer of sand 4-1-15

cavitation       5-26

centrifugal dredge pump      5-2

characteristics of a centrifugal pump     5-8

chip forming cutting process clay    4-3-3

chute above hopper 6-3

classification systems       7-10

clay balls: example calculation pipeline resistance 5-86

clay: cutting process in clay     4-3-1

compaction , degree of  7-5

compressive strength

compaction dynamic/explosive 15-13

cone plate with suction mouth for cutter

concentration        5-61

containment bund under water 15-9

constant power: characteristic for constant power drive   5-41

constant volume cvs versus constant tonnage cts 6-15

conveyor belt

correlation of soil parameters       7-19

cost estimate processes  remedial dredging    14-2

cost estimating for dredging projects      11-1

cost estimation: sample costing of beach nourishment.      11-10

cost items in the proposal        11-3

crack formation in rock, effect water depth   4-4-9

crack forming cutting process clay    4-3-3

crew expenses        11-7

crew structure of a large csd and tshd 11-14

critical velocity: influence of the concentration on   5-83

cutter suction dredger (csd)      2-1-1

Cutter head        2-1-8

Cutter head drive        2-1-14

cutting clay         4-3-1

cutting rock         4-4-1

cutting sand         4-1-1

deformation rate:  influence of in clay   4-3-7

degree of loading D       6-8

degree of saturation         7-1

density         7-2

density critical density        7-9

density measurement in harbour mud      8-17

density meter in pipeline    2-2-6

density of the settled sand  in hopper    6-8

depositing and dumping       1-14

depreciation, interest, maintenance and repair   11-5

depth measurement        8-12

diesel engine      5-33

diesel: characteristic for diesel driven pump   5-36

diffuser: close submerged with siphon effect 6-17

dilatancy         4-1-5

dimensionless indicators      13-4

discharge pressure behind the pump   5-93

discharging sand under water   scaling   13-8

discharging the load  tshd     2-2-10

drag head        2-2-4

drainage wheel

dredge pumps in series on one suction dredger  5-103

dredge wheel   1-5

dredger types       1-1

dredgers 2-1-1

dredging mark  2-2-8

dredging process       1-12

dredging projects    3-1   

Durand: pipeline resistance formula   5-72

dustpan suction mouth   3-2

dynamic soil mechanics        1-16

dynamic soil mechanics       7-5

echo sounder         8-13

ejector  5-5

electrical motor       5-42

electrical shaft  5-32

environmental dredging projects examples    14-10

environmental factors hopper loading      6-16

environmentally safe dredging' and 'remedial dredging'    14-3

environmental monitoring  3-6

equivalent resistance length 5-65

erosion and sedimentation on the breach   4-2-12

erosion/pick-up function according to van Rijn (1993)   4-2-14

erosion/pick-up function for 1-3 m/s    4-2-16

erosion velocity at high v according to van Rhee (2010)  4-2-19

erosion of sand      4-2-1

erosion velocity formula   4-2-17 and  4-2-21 and 4-2-22

estimate of project durations using Monte Carlo simulation 12-9

estimate of uptime using the wave scatter diagram   12-7

estimating dredging project costs    11-1

examples   tolerances      10-3

excavating and loosening       1-12

excavation 4-1-1

fall velocity w of a grain     5-59

fill area , open or closed 15-5

fill slope under and above water 15-11

fines , washing out of 15-4

Floating pipeline 15-14

flow dredging 1-11

flow velocity measuring stick 5-56

foreword  i-iii

fracture state and weathering   7-15

fragment forming cutting process  clay  4-3-3

free fall weir 6-18

Führböter : pipeline resistance according to führböter   5-79

fuel consumption 2-2-3 / 5-33

fuel: costs for fuel and lubricants      11-8

full fuel zone     5-35

fume limit in P-Q diagram 5-111

fume limit  5-34

gps and dgps  positoning fixing       8-7

grain diameter characteristic     5-59

grain size  influence on pump characteristics  5-23

grain size classification on grain size      7-11

grain stresses and hydrostatic pressures     7-5

grating

grit stress 4-4-9

hardfacing , use to sharpen blade 4-1-8

hard metal insert (Bit)  2-1-20

hatch for inspection

headwall velocity  formula  4-2-6

homogeneous turbulent flow     5-64

hopper design.        6-16

hopper efficiency        6-9

hopper settling process     6-9

hopper: mass and volume of the hopper contents     6-7

Hopper load 6-10

hub  2-1-8

hydraulic filling  ii 15-1

hydraulic lifting and transporting       5-1

hydrostatic pressures rock: influence of   4-4-7

ideal settling basin       6-19

impeller diameter d and width b  pump 5-18

insurance expenses       11-8

interaction between pump and pipeline 5-89

Jufin: pipeline resistance according to jufin-lopatin   5-75

Koning's (de) density flow model      6-25

laminar: homogeneous laminar flow     5-66

limitation by hman when pumping water   5-98

limitation by maximum power or torque of the drive mechanism 5-97

liquid ring pump   5-4

loading a trailing suction dredger    6-3

loading rate  hopper      6-7

loading rate rock: influence of   4-4-7

loading system  tshd    2-19

loading the hopper       2-2-8

loading: degree of loading D       6-8

maintenance dredging        3-1

manometric head demand by the pipeline   5-94

material properties   hopper loading    6-9

Matousek's expansion of Wilson's two-layer theory.   5-87

maximum vacuum and q-critical   5-96

mixture density     5-40

mixture flow behaviour at the toe of the slope    4-2-17

mixture flow through a pipe  5-57

mixture formation        1-13

motion of a cutter suction dredger     12-5

motion of a trailing suction hopper dredger    12-4

multi beam echo sounder       8-16

multi staggered tooth arrangement 2-1-11 

net positive suction head; npsh    5-28

newtonian fluid in laminar zone     5-67

Normal distributed bottom depth  10-6

NPSH: cavitation, npsh and maximum vacuum     5-26

optical position fixing systems      8-2

optimising cycle production  hopper      6-5

overcutting 2-1-12

overdepth: paid and unpaid overdepth       10-1

overflow loss        6-8

peat

permeability sand       4-1-6 and 13-6

pipeline characteristics       5-90

pipeline resistance for extremely coarse-grained material 5-84

pipeline resistance for heterogeneous soil-water 5-72mixtures   5-72

pipeline resistance for homogeneous mixtures    5-64

pipeline transport  influence of the grain properties  5-59

pipeline transport theory       5-55

pivoting point of the cutter ladder  2-1-5

plane of shear forming cutting process  clay  4-3-3

plane of shear in sand      4-1-9

plastic cutting process in clay     4-3-2

plough   1-10

plug flow  5-68

pore water rock: influence of   4-4-7

Pore number e and pore content n     7-1

position fixing         8-1

post-breaching spillage   2-1-5

power: characteristics for constant power and torque pump 5-22

production        5-108

production analysis by means of the P-Q diagram  5-111

production as a function of the discharge distance  5-109

production calculation for a CSD in clay   4-3-8

production capacity of TSHD       11-12

production costs         11-4

production determining factors       1-17

production of a cutter suction dredger     2-1-16

project expenses         11-9

projects: photo impression of some dredging projects     3-6

pulley 2-2-2

pump characteristic influence of the drive mechanism    5-32

pump characteristic.  5-11

pumps and drive mechanisms     5-1

quality improving of sand at the borrow area15-4

radio positioning systems       8-4

rainbow  technique        3-5

reclamation area overflow (weir box)

regulator      5-34

relationship between soil properties and

dredging processes   7-5

reclamation 15-1

reeve (a cable)

relative density Dr       7-3

relative density improvement  reclaimed sand 15-13

remedial dredging  14-1

Rest load trailing suction hopper  dredger  6-2

Rhee's (van) 1dv and 2dv sedimentation models    6-26

road project reclamation 15-10

rock classification on rock origin and formation    7-15

rock failure behaviour   4-4-5

rock properties      4-4-11

rock: cutting process in rock   4-4-1

rotary current motor     5-46

rotational speed n  pump   5-16

sand pit production practical considerations 4-2-11

sand: cutting process in sand  4-1-1

sand pit suction production     4-2-8

saturation: degree of saturation         7-1

scale modelling of dredging processes  13-1

scale tests with dredgers     13-1

scaling concepts      13-2

scaling dredging processes       13-5

scaling factors and scaling rules     13-2

sciences related to dredging       1-16

Segregation of fines 15-7

self emtying TSHD:  optimising cycle-production   6-6

Settling : models of hopper settling process     6-19

Settlement beacon 15-5

settling definitions and concepts      6-7

settling: hindered settling by concentration 6-11

settling pond 15-9

Shearplane angle β    4-1-10

Shields parameter 4-2-14

silt content /proportion of fines      7-9

silt trap 15-8

similarity: geometrical and dynamic similarity     13-3

slope: breaching process on a slope at angle β    4-2-5

slope stability suction pit 15-3

snifter 15-14

soft clay or mud 15-1

soil mechanical aspects of dredging      7-1

soil parameters relevant for dredging processes     7-1

specific energy of rock       4-4-13

specific energy: cutting sand     4-1-18

spillage and turbidity        14-4

spud carriage   2-1-2

stability         7-6

staggered teeth  positioning 2-1-10

storm surge barrier rotterdam    3-2

study guidelines iv

suction emptying system

suction formula 5-92

suction mouth 2-1-1

suction tube 1-13

surcharge 15-2

survey results: the presentation of survey results       8-19

survey: position fixing and depth measurement     8-1

suspension: determining the suspension parameter S      14-7

swell compensator 2-2-2

siphon effect 6-17

tds example calculation        9-4

tolerances          10-1

tongue / end piece  5-6

tons dry solids (tds) production measurement system   9-1

tooth changing time interval , calculation  optimum   2-1-24

trailing suction hopper dredger (tshd)    2-2-1

transport concentration      5-62

transport factor        5-62

trunnion bend  in suction tube TSHD 2-2-4

turbidity: maximum requirements on turbidity      14-9

turbocharger      5-34

under water position systems.      8-10

undercutting 2-1-12

units in the dredging industry      1-12

unpaid overdepth volume calculation  10-6

unworkable situations     12-1

vacuum      5-27

vacuum limit   5-111

vacuum demand at the suction side of the pump  5-90

vacuum the maximum allowable vacuum    5-29

vacuum:  influence available vacuum on production  5-108

Valve   

vane / blade      5-6

variable overflow: optimising cycle-production  6-5

velocity meter in pipeline     2-2-6

vibratory compaction 15-13

volumetric concentration     5-61

volute / spiral gap        5-6

wear plate  5-6

water content          7-2

water injection dredging using a tshd   2-2-12

water jet pump theory (ejector pump)     5-49

water jet theory         1-18

water overpressure gauge at reclamation area15-5

wave data         12-2

wear         7-9 / 11-6

wearing surface of a tooth 2-1-17 / 4-4-2

weathering of rock 7-17

weekly production costs for main plant    11-9

weir box 15-8

width of cut ; ‘minimum’   2-1-6

Wilson pipeline resistance according to      5-81

winch (side wire)  2-1-1

workability          12-1

workability   determining the workability       12-7

workable wave heights and flow velocities dredgers 12-7

working methods csd       2-1-3

working points of a centrifugal pump.  5-8

working range with the working points    5-95

Yagi's one-dimensional sediment-diffusion model    6-21

bottom of page